Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Diagnostics (Basel) ; 13(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: covidwho-2294971

RESUMEN

Chest X-rays (CXRs) are essential in the preliminary radiographic assessment of patients affected by COVID-19. Junior residents, as the first point-of-contact in the diagnostic process, are expected to interpret these CXRs accurately. We aimed to assess the effectiveness of a deep neural network in distinguishing COVID-19 from other types of pneumonia, and to determine its potential contribution to improving the diagnostic precision of less experienced residents. A total of 5051 CXRs were utilized to develop and assess an artificial intelligence (AI) model capable of performing three-class classification, namely non-pneumonia, non-COVID-19 pneumonia, and COVID-19 pneumonia. Additionally, an external dataset comprising 500 distinct CXRs was examined by three junior residents with differing levels of training. The CXRs were evaluated both with and without AI assistance. The AI model demonstrated impressive performance, with an Area under the ROC Curve (AUC) of 0.9518 on the internal test set and 0.8594 on the external test set, which improves the AUC score of the current state-of-the-art algorithms by 1.25% and 4.26%, respectively. When assisted by the AI model, the performance of the junior residents improved in a manner that was inversely proportional to their level of training. Among the three junior residents, two showed significant improvement with the assistance of AI. This research highlights the novel development of an AI model for three-class CXR classification and its potential to augment junior residents' diagnostic accuracy, with validation on external data to demonstrate real-world applicability. In practical use, the AI model effectively supported junior residents in interpreting CXRs, boosting their confidence in diagnosis. While the AI model improved junior residents' performance, a decline in performance was observed on the external test compared to the internal test set. This suggests a domain shift between the patient dataset and the external dataset, highlighting the need for future research on test-time training domain adaptation to address this issue.

2.
Med Image Anal ; 83: 102664, 2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: covidwho-2229942

RESUMEN

Pneumonia can be difficult to diagnose since its symptoms are too variable, and the radiographic signs are often very similar to those seen in other illnesses such as a cold or influenza. Deep neural networks have shown promising performance in automated pneumonia diagnosis using chest X-ray radiography, allowing mass screening and early intervention to reduce the severe cases and death toll. However, they usually require many well-labelled chest X-ray images for training to achieve high diagnostic accuracy. To reduce the need for training data and annotation resources, we propose a novel method called Contrastive Domain Adaptation with Consistency Match (CDACM). It transfers the knowledge from different but relevant datasets to the unlabelled small-size target dataset and improves the semantic quality of the learnt representations. Specifically, we design a conditional domain adversarial network to exploit discriminative information conveyed in the predictions to mitigate the domain gap between the source and target datasets. Furthermore, due to the small scale of the target dataset, we construct a feature cloud for each target sample and leverage contrastive learning to extract more discriminative features. Lastly, we propose adaptive feature cloud expansion to push the decision boundary to a low-density area. Unlike most existing transfer learning methods that aim only to mitigate the domain gap, our method instead simultaneously considers the domain gap and the data deficiency problem of the target dataset. The conditional domain adaptation and the feature cloud generation of our method are learning jointly to extract discriminative features in an end-to-end manner. Besides, the adaptive feature cloud expansion improves the model's generalisation ability in the target domain. Extensive experiments on pneumonia and COVID-19 diagnosis tasks demonstrate that our method outperforms several state-of-the-art unsupervised domain adaptation approaches, which verifies the effectiveness of CDACM for automated pneumonia diagnosis using chest X-ray imaging.

3.
Healthcare (Basel) ; 10(1)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: covidwho-1625759

RESUMEN

(1) Background: Chest radiographs are the mainstay of initial radiological investigation in this COVID-19 pandemic. A reliable and readily deployable artificial intelligence (AI) algorithm that detects pneumonia in COVID-19 suspects can be useful for screening or triage in a hospital setting. This study has a few objectives: first, to develop a model that accurately detects pneumonia in COVID-19 suspects; second, to assess its performance in a real-world clinical setting; and third, by integrating the model with the daily clinical workflow, to measure its impact on report turn-around time. (2) Methods: The model was developed from the NIH Chest-14 open-source dataset and fine-tuned using an internal dataset comprising more than 4000 CXRs acquired in our institution. Input from two senior radiologists provided the reference standard. The model was integrated into daily clinical workflow, prioritising abnormal CXRs for expedited reporting. Area under the receiver operating characteristic curve (AUC), F1 score, sensitivity, and specificity were calculated to characterise diagnostic performance. The average time taken by radiologists in reporting the CXRs was compared against the mean baseline time taken prior to implementation of the AI model. (3) Results: 9431 unique CXRs were included in the datasets, of which 1232 were ground truth-labelled positive for pneumonia. On the "live" dataset, the model achieved an AUC of 0.95 (95% confidence interval (CI): 0.92, 0.96) corresponding to a specificity of 97% (95% CI: 0.97, 0.98) and sensitivity of 79% (95% CI: 0.72, 0.84). No statistically significant degradation of diagnostic performance was encountered during clinical deployment, and report turn-around time was reduced by 22%. (4) Conclusion: In real-world clinical deployment, our model expedites reporting of pneumonia in COVID-19 suspects while preserving diagnostic performance without significant model drift.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA